Найдено научных статей и публикаций: 2, для научной тематики: Phenol
1.
Ranjith G. Nair, A.M. Tripathi and S.K. Samdarshi
- Energy , 2011
Nanoscale synthesis of silver sensitized titanium vanadium mixed-metal (Ag/TiV) oxides was done employing sol–gel technique. The physico–chemical properties of the material were examined using XRD (X-ray diffraction), SEM (Scanning Electron Microscopy), EDAX (Energy Dispersive X-ray Spectroscopy), H...
Nanoscale synthesis of silver sensitized titanium vanadium mixed-metal (Ag/TiV) oxides was done employing sol–gel technique. The physico–chemical properties of the material were examined using XRD (X-ray diffraction), SEM (Scanning Electron Microscopy), EDAX (Energy Dispersive X-ray Spectroscopy), HR-TEM (High Resolution Transmission Electron Microscopy), XPS (X-ray Photoelectron Spectroscopy), UV-DRS and Photoluminescence analysis (PL). The results indicated the presence of predominantly rutile mixed phase particles of 20–30 nm grain size. Identically prepared TiV as well as Ag/TiV oxide catalyst showed enhanced and extended visible light absorption with an absorption upper limit, λ ≥ 550 nm. The visible light photocatalytic activity of Ag/TiV oxide showed an increase of about three and seven times compared to TiV oxide and Degussa P25 respectively, in the rate of degradation of phenol. The reason for the enhanced visible light activity of Ag/TiV oxide may be ascribed to elevated and extended absorption due to combined effect of dopant induced band gap reduction and visible light induced surface plasmon resonance of the Ag nanoparticles. The photocatalytic activity is complemented by localized charge traps and Ag assisted charge separation in the system as well.
2.
A.M. Tripathi, Ranjith G. Nair, S.K. Samdarshi
- Solar Energy Materials & Solar Cells , 2010
Silver sensitized titanium vanadium mixed metal (Ag/TiV) oxides were prepared by nanoscale synthesis route employing the sol–gel technique. It led to the development of 5–20 nm particles with predominantly anatase phase. The physicochemical characterization of the particles was done by X-ray diffrac...
Silver sensitized titanium vanadium mixed metal (Ag/TiV) oxides were prepared by nanoscale synthesis route employing the sol–gel technique. It led to the development of 5–20 nm particles with predominantly anatase phase. The physicochemical characterization of the particles was done by X-ray diffractrometry (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM),
energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), UV–visible diffuse reflectance spectroscopy (UV–Vis DRS) and photoluminescence spectroscopy (PL). The reflectance spectrum shows a red shift in the optical response of the catalyst with its band gap absorption upper limit covering a
large portion of the visible spectrum, i.e. labsZ700 nm. The performance of the materials was examined under laboratory visible light and solar radiation exposure. The rate of degradation of methylene blue (MB)and phenol exhibited an increase of about six and four times, respectively, in visible light compared to
Degussa P-25. This may be attributed to the increased absorption due to Ti–Vmixed metal oxides, favorable electron transfer in the anatase–rutile mixed phase coupled with silver’s scavenging action and reduced electron–hole recombination thereon.