Abiotic stress is the major limiting factor of plant growth and crop yield. Better understanding of plant stress responses and tolerance is very important in the light of increasing intensities of stressors like salinity, drought, flooding, heavy metal, temperature extremes, high-light intensities, ...
Abiotic stress is the major limiting factor of plant growth and crop yield. Better understanding of plant stress responses and tolerance is very important in the light of increasing intensities of stressors like salinity, drought, flooding, heavy metal, temperature extremes, high-light intensities, UB-radiation, herbicides, ozone and others, due to global climatic and other environmental changes. The role of Nitric oxide (NO) in stress responses in plants came in the focus of plant science in the last decade. NO is an important signaling molecule with diverse physiological and biochemical functions involving the induction of different intracellular plants processes, including the expression of defense-related and redox regulated genes against abiotic and biotic stress induced reactive oxygen species (ROS) detoxification. In spite of the significant progress that has been made in understanding NO biosynthesis and signaling in plant, several crucial questions remain unanswered. In this study, we reviewed the recent progress in NO research to reveal its diverse role in the physiological and biochemical processes in plants and the protective mechanisms towards abiotic stress tolerance.